
Enshroud Project
Smart Contract Audits

Resolution Report

Enshroud Dev Team
19 May, 2025

The SourceHat Team performed a comprehensive audit of all 6 of our smart contracts and prepared a
report in October 2024, which can be viewed here.

This document describes the mitigation our team performed on each of the Findings identified by the
SourceHat auditors. These corrections were deployed on the Sepolia testnet in updated contracts on 28
January, 2025 (see table below). We shall take the issues in the same order they were presented in the
audit report.

Finding #1: [DAOPool contract]

Description: When a claim for deposit trade is created, an open offer is created for the user
offering the shares for a claim, but when the trade is executed, the share amount is decremented
from the open offer of the user providing the tokens.

Resolution Actions:

Because the functionality was likely of limited utility (especially without integrated market price
feeds), the entire mechanism of offering claimable tokens to other users in exchange for $ENSHROUD
has been removed. This moots the error described by this Finding, and also significantly simplifies the
DAOPool contract.

Finding #2: [DAOPool contract]

Description: When claiming Enshroud tokens, the total staked amount is excluded from the
total claimable tokens to prevent user's staked balances from being withdrawn as rewards;
however, deposited (unstaked) Enshroud tokens are not excluded.

Risk/Impact: Users' deposited but unstaked ENSHROUD balances will be distributed as
rewards.

Recommendation: The contract's total deposited ENSHROUD should be excluded from
claimable rewards.

https://sourcehat.com/
https://sourcehat.com/audits/Enshroud/

Resolution Actions:

The auditors’ Recommendation was implemented. This was done by adding a new global variable:

uint256 public depositedUnstaked;

used to track the number of $ENSHROUD tokens deposited to the contract but not staked. This
variable is incremented during deposits and unstakes [in functions depositRegular(),
depositWithPermit(), unstake(), deposit(), and depositWithLocking()], and decremented during
withdrawals and stakes [in functions withdraw() and stake()]. The depositedUnstaked total is then
excluded from computation of claimable yields for $ENSHROUD tokens (along with totalStake) in the
functions claimYield() and claimTokenYieldAsENFTs().

Finding #3: [DAOPool contract]

Description: The claimed mapping for ETH is used to ensure that a user has not claimed before
making a claim offer as ETH is intended to be claimed on any type of claim, but the
claimTokenYieldAsENFTs() function does not claim ETH.

if (BLOCKS_PER_EPOCH > (block.number - claimed[msg.sender][address(0)]))
 revert AlreadyClaimedThisEpoch();

Risk/Impact: An offeror can claim yield in every available token excluding ETH, then offer a
claim. The token offeror will still be permitted to accept the trade, but the claim offeror will
only lose a portion of their ETH rewards while still receiving the full value from their other
claims. This can be exploited by a user with two addresses by executing offers to another
address owned by them in order to execute multiple token claims using the same shares.

Recommendation: The claimTokenYieldAsENFTs() function should automatically distribute
ETH rewards and update a user's claimed mapping for ETH.

Resolution Actions:

While the Risk scenario identified by the auditors was obviated by the removal of the offer claim
functionality, the Recommendation was nevertheless implemented. The function
claimTokenYieldAsENFTs() now also claims ETH, following the loop on the passed ERC20 token
contracts, analogous to the procedure used in claimYields().

Finding #4: [DAOPool contract]

Description: A user can stake and lock another user's tokens on behalf of them at any time.

Risk/Impact: A user's deposit balance can be locked by another user at any time, preventing
them from withdrawing for at least one week.

Recommendation: Users should only be permitted to stake their own deposit balance, or
staking approval functionality should be added.

Resolution Actions:

The auditors’ Recommendation was implemented. The stake() function was modified as follows:

if (_staker != msg.sender) revert NotDepositOwner();

This prevents the malicious locking scenario described.

Finding #5: [DAOPool contract]

Description: When staking on behalf of another user, the specified user's staked tokens are
delegated to the caller's delegate instead of the staker's.

Risk/Impact: Voting power may be incorrect or break due to incorrect delegation of voting
power.

Recommendation: Users should only be permitted to stake their own deposit balance.

Resolution Actions:

The auditors’ Recommendation was implemented as a consequence of the resolution of Finding #4,
because users are no longer permitted to stake on behalf of others, and the internal function
_updateDelegatedVotingPower() only manipulates the delegated user of msg.sender.

Finding #6: [DAOPool contract (sic, actually MVOStaking)]

Description: Users cannot withdraw from their staked MVO balance if they have an active
Timelock.

if (_remaining != 0 && _amount > _unlockedAndWithdrawable)
 revert AmountLargerThanWithdrawable();

Risk/Impact: If a malicious user withdraws their Timelock balance to another user's MVO
address, the recipient will not be permitted to withdraw from their MVO until the Timelock has
completed, regardless of if they have an existing unlocked staking balance.

Recommendation: Timelocked balances should not prevent users from withdrawing their non-
timelocked balances.

Resolution Actions:

This finding was erroneously assigned to the DAOPool contract, but the referenced code actually
occurs in the MVOStaking contract. The fix was to make the withdraw() function support treating
tokens outside of the Timelock separately from tokens (withdrawable or not) within the Timelock. The
altered code now looks like this:

// _unlockedAndWithdrawable = unlocked - withdrawn, which cannot be negative;
will return 0 if no timelock

uint256 _unlockedAndWithdrawable = _getUnlocked(msg.sender) -
(timelocks[msg.sender].totalAmount - _remaining);

// in addition to withdrawable from timelock, user can withdraw any tokens
which were added via stake() or stakeWithPermit()

uint256 _neverLocked = idToMVO[_mvoID].stakingQuantum - _remaining;

// if msg.sender has active timelock, revert if _amount is greater than the
unlocked & not yet withdrawn amount + any separately staked unlocked

if (_amount > _unlockedAndWithdrawable + _neverLocked)

revert AmountLargerThanWithdrawable();

// subtract _amount first from the struct's remainingAmount

if (_unlockedAndWithdrawable >= _amount)

timelocks[msg.sender].remainingAmount -= _amount;

else

 timelocks[msg.sender].remainingAmount -=
_unlockedAndWithdrawable;

 // (the rest will come from separately-staked unlocked tokens)

These changes mean that even if someone maliciously “gifts” another user with a Timelock, the
recipient can nevertheless withdraw their own separately deposited tokens (as well as any withdrawable
tokens in the donor’s Timelock, which are deposited as unlocked tokens by the TimelockManager).

Finding #7: [TimelockManager contract]

Description: The IMVOStaking_Timelock stakeTimelock() function declaration used by the
Timelock contract contains parameters in incorrect order.

interface IMVOStaking_Timelock {
 function stakeTimelock(
 string calldata mvoID,
 uint256 amount,
 address staker,
 uint128 releaseStart,
 uint128 releaseEnd
) external;
}

Timelock stakeTimelock function:

function stakeTimelock(
 string calldata _mvoID,
 address _staker,
 uint256 _amount,
 uint128 _releaseStart,
 uint128 _releaseEnd
)

Risk/Impact: The Timelock contract's withdrawTimelockToMVOStaking() function will fail
if a user has an active Timelock.

Resolution Actions:

This problem was also discovered during contract debugging. The fix was applied in the MVOStaking
contract, making the function declaration read (swapping order of 2nd and 3rd parameters):

function stakeTimelock(
 string calldata _mvoID,

 uint256 _amount,
 address _staker,

 uint128 _releaseStart,
 uint128 _releaseEnd
)

Finding #8: [EnshroudProtocol contract]

Description: A user can provide any token for deposit, but fee-on-transfer tokens are not
supported.

Risk/Impact: User balances will be larger than their deposited amounts. As a result, user
withdrawals may fail or result in a loss of other users' deposited funds.

Recommendation: The team should add support for fee-on-transfer tokens, or add a token
whitelist.

Resolution Actions:

Support was added for tokens that are fee-on-transfer and/or deflationary. This was accomplished by
checking the EnshroudProtocol’s balance in the token before and after the deposit event. Example code
from the function _depositTokens():

uint256 _ourBalanceBefore =
IERC20Permit_EnshroudProtocol(_tokenContract).balanceOf(address(this));

_tokenContract.safeTransferFrom(_depositor, address(this), _amount);

uint256 _ourBalanceAfter =
IERC20Permit_EnshroudProtocol(_tokenContract).balanceOf(address(this));

require(_ourBalanceAfter >= _ourBalanceBefore);

_netAmount = _ourBalanceAfter - _ourBalanceBefore;

This procedure is also utilized in DAOPool:claimTokenYieldAsENFTs() when depositing claimed yields
in a particular token to the EnshroudProtocol contract on behalf of the claiming user.

Finding #9: [Crowdsale contract]

Description: The minWei variable used to prevent users from sending less than the minimum
token price is set to the initial token price upon deployment, but is not increased to match the
price increase from Tier increments.

Risk/Impact: If a user provides less than the minimum price of a token after the Tier has
increased, they will not receive any tokens and lose their provided ETH.

Recommendation: The minWei variable should be increased on every Tier increment.

Resolution Actions:

The auditors’ Recommendation was implemented. The function _incrementTier() now includes:

minWei *= 2;

along with removing the immutable modifier from minWei.

Finding #10: [EnshroudProtocol and MVOStaking contracts]

Description: The RequestApproved() function requires three Admins to approve certain
administrative updates before it can be executed. This is done by approving a certain address;
however, there is no restriction on which administrative function the proposed address will be
used for.

function _isRequestApproved(
 address _reqAddr,
 bytes8 _caller
) internal returns (bool) {
 bytes8 _default;

 if (updateRequested[_reqAddr].requester1 == _default)
 updateRequested[_reqAddr].requester1 = _caller;
 else if (
 updateRequested[_reqAddr].requester1 != _default &&
 updateRequested[_reqAddr].requester2 == _default &&
 _caller != updateRequested[_reqAddr].requester1
) updateRequested[_reqAddr].requester2 = _caller;
 else if (
 updateRequested[_reqAddr].requester1 != _default &&
 updateRequested[_reqAddr].requester2 != _default &&
 _caller != updateRequested[_reqAddr].requester1 &&
 _caller != updateRequested[_reqAddr].requester2
) {
 return true;
 }
 return false;
}

Risk/Impact: If two Admins call a function to update an address, such as
setMVOStakingAddress(), a third Admin could call updateDaoPool(), providing the address
intended to be used as the MVOStaking contract. This function would execute as the address
had been given two approvals.

Recommendation: The team should ensure that address approvals are function-specific.

Resolution Actions:

The auditors’ Recommendation was implemented. This was done by means of adding new enums to
both contracts, adding a parameter of this type to _isRequestApproved(), with a matching field in
Requests {}, and passing the appropriate value in all calling code. In EnshroudProtocol the enum is:

enum ApprovalTypes { MVOStaking, GreyList, Auditor, Treasury, DaoPool }

and in MVOStaking the enum is:

enum ApprovalTypes { MinStake, Protocol }

With matching changes in _isRequestApproved(), this prevents the scenario described from occurring.

Finding #11: [EnshroudProtocol contract]

Description: User points can be artificially inflated through multiple deposits of valueless
tokens or using a malicious contract. As user points do not serve any purpose on-chain, this
has no impact within the scope of this audit.

Recommendation: The team should consider adding a token whitelist or updating the user
points logic.

Resolution Actions:

The userPoints mapping in the EnshroudProtocol contract was meant to keep track of which users have
performed fee-earning protocol interactions (deposits or withdrawals of ETH or ERC20 tokens), as
well as the total number of such points across all users (via the totalUserPoints variable). As noted by
the auditors, this is done without regard to the relative value of any given token, or the quantity of the
deposit or withdrawal (note fees are percentage-based). The intent was that scores could be used to
calculate pro-rated eligibility for a future airdrop of $ENSHROUD tokens, plus allowing users to track
their eligibility.

The Team has decided that a better mechanism would be to search for DepositETH, DepositERC20,
WithdrawETH, and WithdrawERC20 events. This would allow the token whitelist to be applied to
screen out valueless tokens and/or trivial amounts, while also restricting the domain for events to a time
period between certain specific start and end blocks. The set of eligible users, as well as their relative
contributions to fee revenues during the subject time period, could then be determined more equitably.

While this has not yet been done in the latest test version, it’s possible that the userPoints mapping will
be removed from the contract prior to live deployment, simply to save gas.

As stated above, new versions of the smart contracts have been deployed, with verified sources.

Table 1: Revised Smart Contracts

Contract Name Address Block Deployed
EnshroudToken 0x7bA32A25E01F24b6c4D94783

a3C154840268344d
7591976

Crowdsale 0x2c3D8d4597cd6bbFF222235e
Ab745FF7B997e84f

8329549

EnshroudProtocol 0xc353a083050bFF5c89cD123B8
27fDd6a0314Ac8a

8329553

DAOPool 0xc056f8280999ee0c5A99305c52
2978873422256B

8329557

TimelockManager 0x4ba56e866177cf38AAe3F49e0
763aFE21695bE2e

8329631

MVOStaking 0xbe88Fe067D7D363C6f943527
8ba2fa0d6fBF481A

8329635

The latest source code is available from https://sepolia.etherscan.io for all contract addresses.

Vulnerability Analysis Finding: Centralization of Control {WARNING}

• The Admins and mentioned Roles have the permissions described above, including the ability to
mint various tokens.

• Admins have the ability to update various addresses throughout the platform.

Team Comment:

The ability to update various addresses is intentional, and required in order to support individual
updates to contracts without redeploying all of them. In particular the EnshroudProtocol and
MVOStaking contracts may be updated in future to V2, V3 etc. to add additional features.

The minting of $ENSHROUD tokens will be controlled by the EnshroudDAO, but the project’s
tokenomics dictate that 45M will be minted overall, in three groups of 15M each: to Founders/Team
(via Timelocks), to Users (via a future airdrop), and to MVO operators (via the MVOStaking contract’s
minting rewards logic). All other tokens (an indeterminate number) will be minted to purchasers by the
Crowdsale contract, and thus in response to market demand. Following the airdrop, it is possible that
the EnshroudDAO will order the minting admins burned via EnshroudToken:updateMinterStatus().

It is the Team’s opinion that this modest degree of centralization is both necessary and tolerable.

https://sepolia.etherscan.io/address/0x2b5eBc2011F25394a973015BC04474852a9B311C
https://sepolia.etherscan.io/address/0x2b5eBc2011F25394a973015BC04474852a9B311C
https://sepolia.etherscan.io/
https://sepolia.etherscan.io/address/0xef732e57f12B8bFA50b0d2C7998c4981ceCD90aA
https://sepolia.etherscan.io/address/0xef732e57f12B8bFA50b0d2C7998c4981ceCD90aA
https://sepolia.etherscan.io/address/0x6677De8a5C0eB21a19e24b21955d3b120086F469
https://sepolia.etherscan.io/address/0x6677De8a5C0eB21a19e24b21955d3b120086F469
https://sepolia.etherscan.io/address/0xA59F1e1bEc4445D9E34bD71654bd5E93ACDd9d52
https://sepolia.etherscan.io/address/0xA59F1e1bEc4445D9E34bD71654bd5E93ACDd9d52
https://sepolia.etherscan.io/address/0xAA71b24e35F9Ac716EFdC14B81bB496A0E0A5f2B
https://sepolia.etherscan.io/address/0xAA71b24e35F9Ac716EFdC14B81bB496A0E0A5f2B
https://sepolia.etherscan.io/address/0x7bA32A25E01F24b6c4D94783a3C154840268344d
https://sepolia.etherscan.io/address/0x7bA32A25E01F24b6c4D94783a3C154840268344d

