
How Enshroud Compares with Tornado Cash
21 April, 2025

Tornado Cash (TC) is a privacy service on Ethereum (and other chains) which was sanctioned on 8th
August, 2022 by the US Treasury Department’s OFAC group. These sanctions were clearly
inappropriate, and done for largely spurious and political reasons, spurring several lawsuits. As of this
writing, the sanctions have been rescinded by OFAC, although the prosecution of TC developer Roman
Storm has yet to be resolved. “Sanctions,” be it noted, constitute an illegal jump from accusation
straight to punishment, leap-frogging normal due process completely. This document compares and
contrasts the operational capabilities of Enshroud with TC. We will undertake a point-by-point
comparison of similarities and differences, so this writeup will necessarily be moderately technical.

Brief Summary of TC

Eliding the full technical details, a qualitative description of TC’s usage is as follows:

1. A user generates a random secret and supplies it to the TC smart contract, along with a desired
deposit duration (time T) and a selected fixed amount.

2. The TC contract hands back an encoded deposit note (receipt), used to represent a proof-of-
ownership of the deposit.

3. The fixed quantum of an asset (such as 0.1 ETH or 1 ETH) is then deposited to the smart
contract’s corresponding pool (e.g. the 1 ETH pool) with the encoded deposit note, joining a
pool of coins supplied by other users.

4. The user waits for the specified length of time T (such as 7 days).

5. The user submits a solved ZK-proof which proves they are in possession of the original secret
associated with the deposit, also designating a withdrawal address.

6. The TC contract then permits the designated withdrawal address to withdraw the original
quantity of deposited coins from the pool.

7. (Optional) Because the withdrawal address needs ETH (for gas) in order to make the
withdrawal from the TC contract, and it’s best to use a fresh wallet address for that purpose, a
“Relayer” (agent) can also be designated. The Relayer pays the gas cost and performs the
withdrawal for an agreed fee, spending the net amount to the withdrawal address.

The net effect is that there is no link on-chain between the depositing address and the withdrawing
address. The degree of uncertainty created is directly proportional to the number of other users
entering or leaving the same asset pool during the time T which elapses between deposit and
withdrawal.

The process can be represented pictorially thus:

https://www.coincenter.org/education/advanced-topics/how-does-tornado-cash-work/

A Few Notes

• Because pool deposits and withdrawals need to be uniform, arbitrary amounts cannot be used,
only those specific amounts and asset types for which a deposit pool exists, as defined by TC.

• The normal assumption is that the depositing User Account and withdrawing User Account
(Acct #2) are controlled by the same party. There is no requirement that this be the case. (That
is, the withdrawal could be a payment to a third party.) But since the amounts are always fixed
quanta, this is unlikely.

• TC only ever supported a small set of assets and pool quanta. Since the USDC pools were
frozen by Circle as a result of the sanctions (and the USDT pools could have been frozen),
effectively only the ETH pools remain in use.

User TC
Smart Contract

Initiate deposit (step #1)

Encoded note (#2)

User
Account Selected TC

Deposit Pool

ETH deposited with
encoded note (#3)

WAIT
(#4)

User
Account Send signed request with

deposit proof, supply
Account 2 address (#5)

Relayer
Account

Submit request (#7)

User
Account

2

Fee

Selected TC
Deposit Pool

ETH withdrawn (#6)

No link on-chain
between these two

• Based on this experience, it might be a valid design constraint that no smart contract privacy
dApp should support any ERC-20 or other token which features an address blacklisting
mechanism. (Possibly, not an update mechanism either, lest blacklisting and/or KYC
whitelisting get added in future.) Currently this criterion affects all major USD stablecoins.
Ironically, it’s precisely these coins which would benefit most from transaction privacy.
Because the current US administration appears to desire the global adoption of USD stablecoins
on crypto rails, and everyone understands that having privacy available would greatly facilitate
that wish, it seems likely that stablecoin issuers such as Circle and Tether are unlikely to get
pressured to blacklist smart contract addresses at this time – even privacy-related contracts. We
therefore conclude that stablecoins will commonly be used with Enshroud, but that users should
do so at their own risk, given the impossibility of predicting future political wind directions.

• TC offers an optional Compliance Tool which uses the deposit note to generate a document
showing the real depositing and withdrawing addresses and amounts.

What Enshroud Offers

The usage process for Enshroud is actually similar to TC, but provides much more flexibility and
achieves a different goal (encrypting spends rather than sterilizing coins). The process works like this
(with some ==> comments interspersed):

1. (Deposit) A user deposits any amount of any ERC-20 compatible asset to the Enshroud smart
contract’s address (via ERC-2612 Permit/Transfer or ERC-20 Approve/Transfer). The contract
responds by awarding the user account an equal amount of balance credit. This is similar to the
way collateral is deposited to DeFi loan services such as Aave or Compound, except that no
separate receipt token is issued (such as cDAI or aETH). A small fee (such as 0.3%) is charged
for this service. (Implying the user can mint 99.7% of their deposited balance into new eNFTs.)

==> So far, nothing is private.

2. (Mint) The user now mints one or more eNFTs (encrypted Non-Fungible Tokens), using their
recorded balance credit as source funding. The Enshroud smart contract mints the eNFT(s)
(each with a unique ID) to the user’s designated address(es), and makes a matching debit
against their balance credit.

==> Because these eNFTs are encrypted, only the owner(s) can see how much each one is for.
==> Although, obviously, the sum of the newly minted eNFTs must equal the balance debited.

For this reason, eNFTs minted to others are less private than when making a Spend.

3. (Spend) The user can now make spends to other wallet addresses, using owned eNFTs as the
funding inputs, and designating explicit amounts and assets to be paid to each payee address.
The Enshroud smart contract will de-mint (burn) all input eNFTs, minting output eNFTs of
equal value. If there is any unspent input value leftover, the user will receive a fresh eNFT back
as change. (Account balance credit is neither increased nor decreased in a spend.)

==> Only the recipients/owners can view the amounts (or asset types) of their eNFTs.
==> Transaction receipt data for the payer’s transaction will log the list of TransferSingle

events which minted/burned eNFTs associated with this spend, revealing which

addresses were paid. However the values are opaque. (Note this is the opposite of TC.)
==> All mint events are transfers from 0x0 (the smart contract). All burn events appear as

transfers to 0x0. Therefore any given eNFT is never transferred between addresses.
==> Asset types can be mixed and matched in the same spend, as long as valid inputs exist.
==> It costs recipients no gas to receive eNFTs. Therefore they can be sent to empty addresses,

just like spends of ERC-20s or ordinary NFTs.

The deposited value may then circulate indefinitely among wallet addresses in eNFT form. The
generation (distance from an on-chain deposit) of an eNFT is equal to the lowest generation of
the inputs burned to mint it, plus one. As value circulates opaquely among addresses, the
generation increases. While no fees are charged by Enshroud for spends, spenders pay all gas.

==> It is permitted to make spends to oneself, by including one’s own address as a payee.
==> eNFTs can be issued for 0, either to send a message (via the memo line) or to generate

additional ambiguity. However each additional eNFT slightly raises the gas cost.
==> Up to 20 eNFTs may be minted, or burned, in a single spend, constrained only by gas.

4. (Burn aka Redeem/Withdraw) A recipient user account which owns one or more eNFTs can
redeem them at any time by submitting them to the Enshroud smart contract. The redeemed
eNFTs are burnt and a matching on-chain spend of the underlying token asset is made to their
owning account. As with minting, a modest fee is charged by the smart contract, which is
deducted from the withdrawal spend performed.

==> Necessarily, the redeemed eNFTs must have equaled the amount withdrawn, less change.
Therefore the act of redemption “un-enshrouds” the value of the input eNFTs.

These four basic steps (Deposit, Mint, Spend, Burn) can be represented pictorially as follows:

Deposit

Mint

Spend

User
Account
0x123

Enshroud
Deposit Pool

Amount, say 1 ETH,
transferred on-chain

User
Account
0x123

+1 wETH
Balance for
Acct 0x123

Enshroud
Smart Contract

Signed and validated minting
instructions (provided via L2)

Debit to fund
mintage

eNFT #1
(encrypted data)

Minted to
User Account

0x123

eNFT #2
(encrypted data)

Minted to
User Account

0x456

User 2
Account
0x456

Optional: additional eNFT
minted to another user

* Sum of eNFTs issued equals balance credit used.
* Asset types are the same as the balance.

User
Account
0x123

eNFT 1
(encrypted)
== 1 wETH

{generation=1}

Enshroud
Smart Contract

Signed and validated spending
instructions (provided via L2)

eNFT N
(encrypted)
== 2 wBTC

{generation=3}

Input
eNFTs
(burned)

eNFT 3
(minted 0x123)

0.25 wETH
{gen=2}

eNFT 4
(minted 0x234)

0.25 wETH
{gen=2}

eNFT 5
(minted 0x345)

0.5 wETH
{gen=2}

eNFT 6
(minted 0x456)

2 wBTC
{gen=4}

User 4
Account
0x234

User 3
Account
0x345

User 2
Account
0x456

User
Account
0x123

Change back to
the spender

==> In this single example transaction, User 0x123 spends an eNFT worth 1 wETH along with a
second eNFT worth 2 wBTC. The ether is divided up between three recipients: User 0x234
(who gets 0.25 wETH), User 0x345 (who gets 0.5 wETH), and some change back for the
unspent difference (0.25 wETH). User 0x456 receives 2.0 wrapped Bitcoin, which equaled the
input amount, therefore there was no change back. The {generation} values of the new output
eNFTs are incremented.

Redeem/Burn

A Few Notes

• All the instructions (calldata) said to be “provided via L2” are the result of a separate signed
transaction previously made by the user (via the Enshroud dApp) with the Enshroud quasi-
Layer 2 validators, which are called MVOs, for Metadata Validator Oracles. While the design
of Enshroud’s “Layer 2” is beyond the scope of this article, the function of the MVOs is to
validate what the user is doing, such as guaranteeing that input eNFTs are valid and that outputs
do not exceed inputs. While there is no actual Layer 2 blockchain, an N of M multi-signature
proof-of-stake consensus mechanism is used to generate signed calldata for the smart contract
methods, such that only (signed) hashed details are exposed in mempool calldata. Note that
MVOs only perform text processing services, never have access to any coins, run only
published open source code, and can be sliced for misbehavior. Their purpose is to preapprove
user actions by signature so that the on-chain smart contract can trust hash-blinded user
calldata.

• Encrypted signed receipts are also generated (by the MVOs) for both senders and recipients.
Sender receipts show all payees, while payee receipts show only the sender (but not any other
payees). Only the owners can download or decrypt their receipts, and – importantly – owners
can permanently delete them at will. No receipt transaction history is ever stored on-chain.

• Also, note that the AES-256 keys used to encrypt eNFTs are purged from the keyservers after
the eNFTs have been burned (i.e. used as inputs for a spend or redemption). Ditto the keys for

User 3
Account
0x345

Enshroud
Smart Contract

eNFT 5
(minted 0x345)

0.5 wETH
{gen=2}

Signed and validated redeem
instructions (provided via L2)

Input eNFT
(burned)

User 3
Account
0x345

Enshroud
Deposit Pool

0.5 ETH withdrawn on-chain

receipts after their deletion. This leaves the actual owners of the data as the only parties who
might retain a copy of the keys required to successfully decrypt those eNFTs. All eNFTs are
permanently appended to the blockchain’s event log, but that’s of no use to anyone without the
individual unique keys necessary to decrypt them.

Similarities and Differences

We are now able to discuss in detail the comparison between Tornado Cash and Enshroud. Let’s start
with the similarities.

How Enshroud and TC are Similar

• Both systems are 100% non-custodial. That is, no actor within TC or Enshroud ever has control
over spending deposited coins (or eNFTs). Every funds transaction is submitted on-chain by a
user’s wallet.

• Writers of open source software have no ability to control the future use of their software, or to
limit, screen or otherwise restrict access by any particular person or account address.

• Blockchains supported are determined by the project (DAO) via smart contract deployment.

• The dApp client is hosted using IPFS, effectively restricting access to power Web3 users in
exchange for censorship resistance.

How Enshroud and TC are Different

• TC breaks the link between the depositor and the withdrawer, with a probability of success
related to the amount of parallel activity by other users during the deposit period. Enshroud
obscures but does not break the metadata linkage between payer and payee; however it conceals
the details of the transaction from observers 100% of the time. This is the most important
difference, reflecting a fundamentally different aim. TC acts as a coin sterilizing service; while
Enshroud provides encrypted spends of coins between addresses.

• TC amounts are quantized to match predetermined pool amount thresholds; Enshroud amounts
are variable and set by the users. (But note gas costs will dictate practical minimums.)

• TC deposits are for specific durations; Enshroud eNFTs can be held indefinitely after minting,
or spent immediately. Given intelligent use, Enshroud’s privacy does not depend on wait time.

• Assets supported on TC are determined by the DAO (operators), which needs to create explicit
Deposit Pools for each such supported asset / quanta permutation. Enshroud allows users to
deposit to its smart contract any ERC-20, ERC-777, or ERC-4626 compatible asset, in variable
amounts. (Effectively this means that the EnshroudProtocol smart contract is itself the Deposit
Pool for all suitable assets.)

• Reclaims of TC deposits require gas; Enshroud eNFTs can be spent to empty addresses.
(Although spend/burn operations will require gas.) Therefore, there are no Relayers in
Enshroud. (This does not prevent ad hoc relayers from offering their services.)

• Enshroud eNFTs once minted can be circulated among users any number of times; TC deposits
can be “spent” only once, directly to the withdrawing address. Enshroud thus creates a long-
term pool of blinded circulating value, albeit between known addresses.

• Enshroud has a quasi-Layer 2 system which operates off-chain on a VPN, with all access to it
made through encrypted protocols (ECIES-based, rather than https); TC is on-chain only.

• A TC user is probably transferring coins to another address they control. An Enshroud user can
certainly do that, but is more likely to transfer eNFTs to other independent parties.

• Enshroud eNFTs can contain “memo” lines (up to 1024 characters), and can even be issued for
0 amounts. This makes Enshroud a literal secure wallet messaging system in addition to a
private value transfer mechanism.

• TC offers generation of a PDF summary of a transaction, using its Compliance Tool. Enshroud
creates encrypted receipts for participants, for Mint, Spend, and Burn operations. These can
only be accessed by the owning addresses via a download request made to the MVO layer.
Receipts embody transaction history to assist with bookkeeping, and can be downloaded in
clear text. They also indicate to eNFT recipients which address sent them that eNFT, and serve
as irrefutable proof-of-payment (because they are signed by MVOs). Receipts can be deleted
permanently at user discretion and their associated AES-256 encryption keys destroyed.

• Enshroud purges its ephemeral AES keys when they are no longer required; TC does not
encrypt anything.

Summary:

Design Feature Tornado Cash Enshroud
Address linkage in metadata None (link broken) From payer only

Spend amounts / assets encrypted No Yes
Deposit durations Fixed term Variable at user discretion
Relayers needed Yes No
Circulation limit Single iteration No iteration limit

Secure protocol for sensitive data No Yes
Attached memo message No Yes

Encrypted transaction receipts Yes, but not encrypted Yes
Benefits require active community Yes Not required, but enhanced

Amounts Fixed according to pool size Variable
Ephemeral encryption keys N/A Yes

Conclusion

It would be mistaken to assert that TC and Enshroud are truly competitors. They were designed to
solve very different problems, and in fact it’s easy to imagine how they could work synergistically.
Enshroud addresses a distinct need which is not currently offered in the PrivFi sector, probably because
no one has believed it was possible: making private encrypted payments on a public blockchain.

The default position of financial regulators and law enforcement has become that their right to
surveillance over all payments is absolute, and that no one has any right whatsoever to financial
privacy in the realm of electronic transactions. This of course is false; indeed on the contrary financial
privacy should be absolute in the absence of prior suspicion based on probable cause. And in such
cases, the target of any investigation should be the individuals themselves, by means of following due
process, not blanket monitoring conducted through third parties (typically with a prohibition on
disclosure, aka a gag order). Enshroud can help to right this imbalance, by making the participants in a
transaction literally the only ones who can supply any information concerning it.

Blockchains are just a specialized form of messaging system. Therefore all blockchain transactions are
speech, which sometimes happen to behave something like money. Speech that is math is still speech.

Enshroud provides a software service which encrypts payments much like PGP encrypts email. It is a
tool that empowers its users. As with email encryption, its use is entirely in the hands of its users.

It will of course be said that Enshroud enables criminality. But actually it works to prevent criminal
behavior – by governments. Blanket suspicionless surveillance is illegal, since by its very nature it
violates the highest law of the land, the Bill of Rights. (Most countries have one.) Widespread
oppression of the innocent is not an acceptable cost of doing business to apprehend the guilty. Tyranny
is a serious crime, so like any encryption tool, in a sense Enshroud is really about the enforcement of
laws against tyranny and violations of privacy generally.

We hope this essay has assisted you in understanding what Enshroud was designed to accomplish.
Thank you for reading!

– The Enshroud Team

